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APPLICATION OF MATHEMATICAL STATISTICS METHODS TO THE

STUDY OF ARTIFICIAL EARTH SATELLITE MOVEMENT

NEAR THE CENTER OF MASS

N. F. Martynova

The orientation of an artificial Earth satellite [AES] with /83

given shape and given dynamic characteristics depends on its po-

sition at an initial moment and on perturbing moments of external

forces affecting the satellite. By assigning a certain model of

these external forces, we can study orbital motion of an AES.But /84

due to diverse accidents, when the satellite separates from the

booster rocket, the orientation and angular velocities of the

satellite at the initial moment in time can be given only *ith

an accuracy to within several deviations from the average values,

i.e., parameters characterizing the orientation at the initial

moment are quantities of a random nature, subordinate to some law

of distribution.

In turn, the moments of external forces acting on a satel-

lite are also functions of such random arguments as atmospheric

density, Earth's magnetic field intensity, Solar radiation in-

tensity, etc. Moreover, the satellite can be subjected to the

perturbing effect of meteorites; consequently the angular velo-

cities of its rotation about the center of mass can receive ran-

dom increases at an arbitrary point in time.

According to currently available published materials, we

do not have sufficiently complete information on the distributive

laws of atmospheric density for different altitudes. Those em-

pirical models of the atmosphere, which are employed at present,

can be viewed only as models of average atmospheric density,

without calculation of the spread of values of density around

the average.



But in many studies ([2], [9], etc.) there is an indication that

this dispersion can attain very large values according to the al-

titude and other factors.

D. G. King-Healey [2] notes that if on the Earth's surface

deviations in density from its average reach 4%, then at alti-

tudes from 160 to 240 km these deviations can reach',35%. At

altitudes of 640-720 km, density can reach values which exceed

the average by twice. Atmospheric density between 160 and 800

km is greatly affected by solar activity, and this effect is pro-

bable in nature.

The same can be said of the effect of Earth's magnetic field

on the orientation of a satellite. According to [2], the inten-

sity of Earth's magnetic field can be seen as the sum of two

components:

1) the larger component varies slightly in time and its

variations can be noted only over a large interval of time;

2) the second component, much less in amplitude, fluctuates

greatly and these fluctuations are random by nature. The presence

of this component is induced mainly by the existence of electri-

cal currents in the upper atmosphere. Its magnitude is very

sensitive to the intensity of solar radiation.

Therefore, the question arises on the study of the effect

of the probable nature of all the above-numerated parameters on

the nature of motion of an artificial s&tellite about the center

of mass.
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1. Equations of motion of AES about the center /85

of mass

Let us consider the artificial satellite of Earth having a

magnetic damper. The center of mass of the satellite moves in a

circular orbit with an angular velocity of w0. With the orbit we

will associate a rectangular system of coordinates CxlYlzl with the

origin in the center of mass of the satellite; moreover, we will

examine a system of primary central axes of inertia of the satel-

lite Cxyz. The orientation of the satellite in space will be

characterized by angles associated with ordinarily used angles of

Euler (TEu' Eu' ) as follows:
Eu' Eu Eu

Therefore, T is the angle of intrinsic rotation, 0 is the

angle of precession in the orbital plane read from the direction

of the radius-vector of the satellite's center of mass, and D

characterizes oscillations of the satellite's axis about the

orbital plane.

The equations of motion of the AES in question about the

center of mass in prbjections onto the primary central axes of

inertia of the satellite will be the following:

Irez+twy, ('--iy)=L,+Kj±+M,
IyOy+WtxO2 (-X-1z)=L)+Ky+My ,

6=- M0+cos-I (Oy sin l (- * cos ),:
(PD ( COS -O sin ,

P= ,•+tg ~p (oy sin P+w cos ),
B
kB (H,11cos7cosI+Hycos ysinII-H, sin )  (1)
B
kI sin- '1 (H cos TI--Hx sin ).
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Here two equations relative to the angles Y and IT, which describe

the position of the vector of magnetic moment B of the core of the

dampger with respect to the axes Cxyz are added to the first six

equations of Euler relative to angles of orientation and projec-

tion of angular velocity of rotation on an axis rigidly connected

to the satellite; Lx, Ly , L are projections of the moment of gra-

x y z
jections of the moment of perturbing forces; Kx , Ky , Kz are pro-

jections of the moment of effect on the body of the satellite on

the part of the stabilizer; Hx , Hy , H are projections of magne-
x y z

tic field intensity (Earth's); B--the magnitude of the magnetic

moment of the damper core; kd--the damping coefficient of the sa-

tellite.

In the capacity of perturbing moments were investigated the /86

moment of aerodynamic forces and the moment induced by the inter-

action of Earth's magnetic field with the satellite. The system of

equations (1) can be reduced to the form

dx,
dt- = Y(Xi, ak t), ij=l, ..

The right sides of these equations are functions of time t,

random arguments ak and variables of motion. Accordingly, the

variables of motion Xi , definable by this system (including angles

of orientation and projection of. angular velocity of AES rotation

about the center of mass) are also functions of time and random

arguments.

2. Equations for Elements of a Covariation

Matrix of Motion

Due to the random nature of parameters of the initial posi-

tion and the condition of the external medium, each realization

of motion will differ from moti O definable by average values of

,4



the parameters. All possible realizations of motion form a certain

n-dimensional trajectory >band around "average" motion. The width

of this band is defined by a correlation matrix of motion, con-

structed as a time-function, i.e., by a vectorial moment of the

II order. The structure of this band is defined by moments of

kigher orders. If at each moment in time the components of motion

are distributed according to a normal law and the law of variation

in time of the average vector of motion and the covariation matrix

are given, the width and structure of the band of dispersion of

motion is defined fully. In general, the question of studying the

structure of the: mtion .dispersion'band is a-complex qhestion and

can only be eludicated by some characteristics of this structure.

We should underscore that we are not investigating random

functions, but functions of random arguments. In study [31 it is

shown that the mathematical expectation of the derivative with re-

spect to time of a function of random arguments and time is equal

to the derivative of its mathematical expectation:

M [Y, (t)= -- [IX, (t)J,

where M--operator of mathematical expectation.

Apparently the following equation is valid:

d (Xd-XC)Yy,-Y

where Xav and YaV for the sake of convenience, denote the mathe-
1 1

matical expectations of the functions Xi(t) and Yi(t).

Let us make a series of formal transformations: /87

5



On the other hand,

M [(Xd -XP) (X - XCP)] = M [(XiXP)(X,-Xc).
dt

C Apyroft cTOPOlibI,

M \- [(X'-Xp) (X1-X) ] = M (Xi- d (X-XP) +

+(X,--X) (X P) ] M [(X,-XP) .i(Y-Y.p)+

S+ (X-X.) (Y,--YP)].

Therefore, to change elements of the covariation matrix K(t) of

the process X(t) in time, the following system of equations must

be derived:

d K[X (t), X(t) =K1Xi (t), Yj (t)]+ K[X(t), Y ()]. (2), dt- - _ 1 (2)

The right sides of this system are functions of time and

parameters of distribution of the probability density of random

arguments of motion. For an n-dimensional process X(t), the
n (n+ 1)order of this system will be equal to 2 For further ana-

lysis, it is useful to examine the case where each of the com-

ponents of the random process can be"written in the form

X, (t)=A '(t)+B cos wtt+C, sin w,(t ),

where Ai , B.i and Ci are functions of random parameters of motion

with non-zero dispersions. The elements of the covariation mat-

rix of motion in this case are expressed so:

K, (t)=M {((A,-A}P)+ (B--BP) cos t + (Ci-CiP).sin wit]X
X[(Aj--Ap)+(B--Bc) cos to + (Cj-CP) sin ot]) =
'=K(A,, A1)+K(B,, Aj) cos o;t+K(C,, A1) sin Wit+

+K (A,, Bj). cos o t+K (A,, C )sin i t+

+-2 [K (B, Bj)-K (CI, Cj)]Xcos (w,+,) t+

+ [K(C,, Bj)+K(B,, Cj)]Xsin(w+A-wj)t+

+ i[K(B,, Bj)+K(C,,. Cj)]Xcos (o,--o)t+

+ 2IK(C,, .Bj)-K(B,, Cj)]Xsin (w--w1)t .
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Therefore, if the components of the random process Xi(t) and

X.(t) contain harmonic components with frequencies of respectively
3

w. and wj, the element of the covariation matrix will contain har-

monic components with frequencies

For variation in time of the dispersion of the component X.(t) /88

the following relation is valid:

D,=D (A,) + D(B )+D(Ci)
+ 2 +2K (A, Bi)coswit+

+2K (A, C,) . sin aot D (Bi)--D (c) cos 2),t+K (B,, C,) sin 2wt.

Accordingly, if Xi(t) has a harmonic component with the frequency

i' then the dispersion Di(t) will generally have components with

frequencies w. and 2w..
1 1

By knowing equations (1) of motion of an object, the dis-

tributive laws of random parameters of motion, we can try to con-

struct a system of equations (2) for a covariation matrix of the

process. But in general, this problem is rather unwieldy and

a more productive means for solving the problem is the definition

of the correlation characteristics of motion by the method of

statistical tests (the Monte-Carlo method).

3. The Monte-Carlo Method

As we know [5], the Monte-Carlo method is based on simula-

tion of a statistical experiment with the aid of a computer and

the recording of numerical characteristics obtained from this

experiment. To calculate estimates of average motion and the

elements of the covariation matrix, the system of equations had

7



to be integrated n times with random values of those parameters of

motion whose effect was studied in the particular case; then the

appropriate mathematical expectation and elements of the covari-

ation matrix had to be averaged. To solve the problem using the

Monte-Carlo method, we must have a subprogram to obtain random

numbers distributed according to given laws with given charac-

teristics. In the case lin point, it was necessary to have sub-

programs of numbers distributed uniformly in some interval and

numbers distributed in conformity with a normal law with given

average values and dispersions.

System of equations (1) of motion of an artificial Earth

satellite about the center of mass was integrated n times by the

Runge-Kutta method in a specific interval of time in the course

of the stated problem. At the start of calculation of each

AES flight version, some random situation was fixed, i.e., by

referring to the subprograms of random numbers, random values of

the initial data of the system of differential equations of motion

and the parameters of the state of the external medium were as

signed. After checking n versions of motion and accumulating

some information in the computer memory bank, estimates of the

interesting probability characteristics of motion for fixed mo-

ments in time were defined in terms of formulas of mathematical /89

statistics. In particular:

1) for average values of components of motion

M* [Xp (t )]= X (t
k=1

2) for elements of the covariation matrix of motion

K [1X (ti), q ()] = ~ (tl)-M* [XP (t)] X
k=1

X {X
) 
(tM)-M* [Xq (ti)]J=

k=1



As we know [4], these estimates for multidimensional normal laws

are estimates of the greatest plausibility.

The number of n random realizations of AES motion about the

center of mass, by which the statistical definition of estimates

of mathematical expectation and elements of the covariation mat-

rix of motion was made, was selected on the basis of requirements,

the attainment of a satisfactory approximation of these estimates

to their true values on one hand; and on the basis of limitations

on computer time on the other hand. In evaluating the accuracy

of the obtained characteristics, the Student law for mathematical

expectation of motion and the law X with k degrees of freedom

(k = n - 1) for elements of the covariation matrix was used. The

maximally possible number of versions was considered to be n = 50.

In some cases n = 30 was found to be sufficient.

4. The Effect of the Random Nature of the Parameters

of State of the External Medium on the

Orientation of an Artificial Satellite,in Space

The effect of the random nature of the parameters of state of:'

the external medium on the AES's orientation in space was investi-

gated for the phase of oriented motion: dynamically symmetric

satellite (Iy = I, (Ix)/(I ) = 3/40) already captured by the
gravitational field and only oscillations about the state of equi-

librium are possible.

The initial data of the system of differential equations
0 0 0 0 0 0

was given as follows: Wx = =, = 1.27 w0 , e = = 0 0,

where wO is orbital angular yelocity. It was also considered

that the density of the atmosphere was distributed in conformity

with a normal law and can achieve values double those of the ave-

rage. On this assumption was defined the density dispersion. It

9



is necessary to note that according to [2], the distributive law

of atmospheric density for altitudes on the order of 600-800 km /90

differs from the normal. But since the goal of this investigation

is only the proof of the need for calculating the random nature

of the parameters of state of the external medium in different

problems on defining AES orientation in space, it suffices to

examine the first approximation of the distributive law of atmo-

spheric density in the form of a normal distributive law.

0

100 200 300 400 Mu

Fig. 1.

Fig. 1 illustrates variations in the mean quadratic devia-

tions of angles 6 and from the average values as a function of

time. We should underscore that these deviations, induced by

the presence of a dispersion of atmospheric density values, attain

comparatively great amplitudes: for the angle 8 the mean quadratic

deviations reach up to 0.06 rad; for the angle P --amplitudes of
0.03 rad. The average values of the angles of orientation coin-

cide with the atmospheric density values. Consequently,8O and ao

characterize direct perturbations in motion formed as a result of

random deviations in atmospheric density from the average value.

Similar results have been obtained in simulation of AES motion

about the center of mass under conditions of dispersed values of

magnetic field intensity of the Earth around the values of some

average model of intensity. As an average model of Earth's mag-

netic field, a dipole model was selected. For the dipole model of

the magnetic field, projections of intensity on the axis of the

orbital system of coordinates with a circular orbit are expressed

as follows:

10



H!,=--0,6( 3 " in sin ,

H•' -sn31( R3 ±h ) 3 sinicoswot,
H =0, 315 ( 3 sin i cos oi,

where h--altitude of the orbit above the Earth's surface; R --radius /91

of the Earth; i--orbital inclination. It was felt that projections

of intensity of the actual Earth's magnetic field on the axis of

an orbital system of coordinates can deviate from their average

values by up to 15%. On that basis, dispersions of intensity

projections Hxl, Hy1 , Hzl were assigned. AES motion about the

center of mass was investigated, as with the dispersion of values

of atmospheric density, in the phase of oriented motion with the

same initial data of the system of differential equations. Just

as before, the average values of the angles of orientation coin-

cide with the angles of orientation in nonperturbed motion, which

proves the linear nature of motion. The mean quadratic deviations

of the angles 8 and 4 from the averages reach values of 0.05 rad
for the angle 6 and 0.03 for the angle 4. Since in the phase of

oriented motion the system of equations (1) for the model in

point can be linearized with respect to all coordinates except

for angle 9, then under the supposition of independence of atmo-

spheric and magnetic perturbations in the satellite!"s motion, the

mean quadratic deviations of the angles of orientation 0 and 4

will be defined by the following equation:

where a is the angular dispersion induced by the dispersion ofa 2
values of atmospheric density, am is the angular dispersion in-

duced by the dispersion of values of projections of Earth'simag-

11



netic field intensity.

Accordingly, only due to two aforementioned factors cO can

attain values on the order of 0.078 rad, while oe--0.042 rad. There-

fore, in those problems where we must have great accuracy in know-

ing the satellite's orientation angles, we must take into account

the random nature of the parameters of state of the external me-

dium.

5. AES Motion After Separation from the Booster

According to [1], [7], [8], the booster carries the AES into

orbit with great accuracy in the orientation angles. But at the

moment of separation of the satellite from the booster, due to

diverse accidents in the separation mechanism, the satellite can

receive rather greater perturbations in angular velocity of rota-

tion about the center of mass. It is worth evaluating the effect

of these random perturbations on the nature of AES motion about

the center of mass, the stability of motion, and on the capture

time of the satellite by the gravitational field.

Under consideration--a dynamically symmetrical satellite.

The booster lifts this satellite into a circular orbit about the

Earth. At the moment of separation from the booster, the satel-

lite is situated in space so that its axis of dynamic symmetry /92

lies in the orbital plane and is directed along the transversal,

i.e., the following values are the initial data of motion through

the orientation angles: 0 0 = , 0 -2 In the absence of

perturbations of the initial state, the satellite is immediately

turned by the gravitational field so that the axis of- its dynamic

symmetry is set along the radius-vector of the center of mass;

the satellite, due to the presence of moments of perturbing force,

makes small oscillations about the state of stable equilibrium

of non-perturbed motion:
12



or

But, as has already been noted above, the actual picture of

AES motion about the center of mass is much more complicated.

The following model problem was investigated. At the moment of

separation from the booster, the satellite receives some angular

velocity of motion about the center of mass, wherein the values

of the projections of this velocity onto the main central axes

of inertia of the satellite are random quantities, uncorrelated

and distributed in conformity to a normal law. The average values

of projections of angular velocities were assigned according to

an ideal picture of motion in the absence of 7initial perturbation:

Dispersions of angular velocity projections were assigned

so that

aoy- z= 30oo.

The initial angles of orientation 4 and # were considered

distributed addiording to a uniform law with the following

average values:

Deviations in the angles 4 and ¢ from the average are small:

max A'o=max AroO,0 8 pao9.

13



Deviations in the angle of precession aenegligibly small.

According to obtained results of simulation, the actual AES

motion about the center of mass can sharply differ-from unperturbed

motion. The mean quadratic deviation of the angle 8 (Fig. 2a)

abruptly increases in time and after a time interval equal to

:3 revolutions "of the center of mass of the satellite around the

Earth, reaches the value of about 500 rad. This proves that the

predominant conditions for great initial perturbations in the

angular rate of rotation are the conditions of rapid rotation of

the axis of dynamic symmetry of the satellite around the normal /93

to the orbital plane (rapid precession of the satellite's axis).

The width of the dispersion

5... ... band of motion with respect to

400 - the angle of nutation (Fig. 2b)

is much less: the mean quad-

pratic deviation a 'in the first

turn of the center of mass of

the satellite around the Earth

reaches 3 rad and then main-

z tains this constant value. Ac-

SM cordingly, even after the first
,00 ~; 2W J00

Fig. 2. turn of the center of mass of

the satellite around the Earth,

the nutation rotation of the axis of dynamic symmetry is replaced

by conditions of oscillation (otherwise the quantity , would con-

tinue to increase). For the angle of inherent satellite rotation,

the bandwidth of dispersion reaches the value ao = 4.3 rad even

after the half-turn of the satellite's center of mass around the-

Earth and continues to increase, but already at a lower rate (Fig.

2c).

Figure 3 shows the nature of variation in mean quadratic

14
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deviations of projections of angular velocities. For all three

projections there is a typical

stable tendency to narrow :tbo',

dispersion band. A comparative ana-
0,03

lysis was made on the velocity of

o2 narrowing of the dispersion band

of for a satellite with
q,0 x y'

_ _ _ _ L a magnetic damper and without a

on w oo' son o tun damper. In the developed program

Fig. 3. of simulation of this process, the

charts were somewhat altered to

exclude the effect of the magnetic damper on AES motion about the

center of mass. In both modifications of the program, simulation

was conduted by the Monte Carlo method of AES motion about the

center of mass.

The initial data of the system of differential equations was

assigned as follows:

00=- , % %----0, -CO= =O, C=O:X_

The dispersions of these quantities at the initial moment /94

were considered such that

Voy= aoo= 30Wo.

After ten revolutions of the satellite's center of mass

around the Earth, the dispersion of angular velocity values about

the average changed as follows:

with a damper without a damper

aox=0,6wo O =0,1o
' " aOy z=2,4o OWy =Owz2 15o

15



"Therefore, these data make it possible to evaluate the

efficiency of the applied damper: this magnetic damper increases

the rate of extinction of precession and nutation oscillations of

the axis of dynamic symmetry of the satellite. In this context,

it also somewhat reduces the rate of stabilization of the satel-

lite in terms of the angle of inherent rotation.

After 15 orbits of the Earth of the center of mass of the

satellite with the magnetic damper cxy reaches the magnitudes

Then the process of damping slows down: after 20 orbits

or0,3w, a3 ,~=W0,7w j

and the process of AES capture by the gravitational field begins.

6. Capture of the Satellite by the

Gravitational Field

The process of transfer affected by gravitational field

force of the Earth from the arbitrary motion of a satellite rela-

tive to the center of mass into an oscillatory motion about the

state of stable equilibrium is called capture of the satellite by

the gravitational field.

To illustrate the capture situation, one of the accidental

realizations of motion was investigated with the following initial

data:

= o='oO, O, 0 z =2,9(o".

16



In the absence of any perturbations of these initial data,

motion of the axis of dynamic symmetry of the satellite is com-

posed of nutation oscillations about the orbital plane of the

center of mass, wherein the amplitude of these oscillations is

small, on the order of 0.05 rad (Fig. 4). Precession of the axis

around the normal to the plane of the orbit also turns into

oscillatory motion about the direction of the radius-vector of

the center of mass (Fig. 5). The angle of inherent rotation of

S05;MS, pad

0 0

200 300 400 t,,UH

Fig. 5.

,oG 200 a0o 40 t, M4/f

Fig. 6.

the satellite gradually ceases to increase, i.e., satellite ro-

tation about the axis of dynamic symmetry attenuates (Fig. 6).

Let us now examine a certain tube of random trajectories
17



around the previously examined trajectory. We will consider that

at the initial moment of time, .the width of this tube is defined

by additional random perturbations of angular velocity of rota-

tion with zero average value and with dispersions of projections

such that

_Y z-viw 0 .

Let us consider the effect of these perturbations on the

capture situation. As in the previous cases, definition of sta-

tistical charactpristics was done in terms of 50 versions of mo-

tion. The average motion for these versions has the same nature

as the aforenoted unique realization of motion. The mathematical

expectation of the angle of nutation oscillations reaches the mag- /96

2 (5 0 pad

0

100 200 300 400 . aI/Hn

Fig. 7.

nitude of about 0.05 rad; but therein the magnitude of dispersion

of this angle has the same order. The bandwidth of dispersion of

the angles of inherent satellite rotation are established as con-

stant and such that the mean quadratic deviation of angle i from

its mathematical expectation do :;:ot exceed 0.5 rad. Accordingly,

in all realizations of motion, j!the satellite transferred from con-

ditions of rotation around the axis of dynamic symmetry into con-

ditions of oscillation about some average value. But the condi-

tions of capture are defined mainly by the nature of variation of

angle 0. According to Figure 10, tlie mathematical expectation of

angle 0 increases from 1.5708 rad and then fluc&tations are estab-

lished M {0} around the value 0 = 31.4. The amplitude of these

fluctuations is much less than the amplitude of fluctuations in

the investigated particular realization of motion. The bandwidth

,of dispersion of motion in terms of angle 0, definable by aO, is
'18



established as constant: ae +. 2.5 rad (Fig. 7) which proves that

in all 50 versions of motion occurred a stable capture of the sa-

tellite by the gravitational field. The verified derivation in

print of different realizations of AES motion about the center of

mass at the capture stage by the gravitational field showed that

capture takes place about the value e = 7n, where n--a natural

numberln ( [8, 12], i.e., capture occurs namely about one of the

states of stable equilibrium:

or
S 00, -1800,

the value of the angle ,due to dynamic symmetry of the satellite,

does not vary. It is only important that the satellite transferred

to conditions of oscillation in terms of angle 9.

The nature of variation of mathematical expectations of pro-

jections of angular velocity of rotation coincides with the nature

of change of w, W wz in this random realization of motion which

here is motion with average values of initial data. The bandwidth

of dispersion of wx, y' , about the averages is established as

small and constant:

Gby Z 0.0001 rad/s,

oaw 0.0005 rad/s,

a Z 0.0006 rad/s.

Therefore, as a result of capture of the satellite by the gravi- /97

tational field, its motion acquires a qualitatively new nature.

We will call it the oriented motion of the AES about the center

of mass.

19



7. Oriented Motion of a Satellite

In the phase of oriented motion, satellite oscillations

around the state of stable equilibrium gradually attenuate ,nd the

amplitudes of the angles 8 and # become small. Perturbations of

the orientation angles induced by the accidental nature of atmo-

spheric density and the Earth's magnetic field intensity become

comparable to the values of these angles in the absence of per-

turbations in the state of the external medium and consequently,

must be taken into account in different problems associated with

the definition of AES orientation. These perturbations were al-

ready examined in section 4 of this study. We also must explain

the effect of random perturbations of initial data of motion. In

the phase of oriented motion, we must convert from studying the

covariation matrix of motion by the Monte Carlo method to the

study of a system of differential equations for elements °0f the

covariation matrix. This method allows us to conduct finer ana-

lysis of variation in the correlation characteristics of motion.

Let us consider a system of differential equations of AES

motion about the center of mass in projections onto the axes of

a semi-stationary system of coordinates in which the x axis is

rigidly connected to the satellite's envelope and is an axis of

dynamic symmetry; the i and z axes travel in a plane perpendi-

cular to the x axis at a velocity of (. The system of equations

of motion for this satellite with a magnetic system of damping

-can be reduced to the following form after several transformations

).X+c t), i, m= ... 7,

where a im(t) and ci(t) are several time functions, parameters of

state of the external medium and geometry of the satellite.
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If we assume that the state of the external medium is not

accidental, i.e., all parameters of state of the external medium

are strictly defined in time, and the initial values of this sys-

tem can -tolerate deviations from the average values with some

initial covariation matrix, then variation of this covariation

matrix in time will, according to equations (2), be defined by the

following system:

-- k= (akj+ajmkmi).
SM (3)

n(n+l)

(Order of this system is N = ,n+ i.e., where n = 7, N = 28). 1 98

We must note that in the case of linear motion, the law of dis-

tribution of probability density of initial data of motion does

not function for variation in time of the elements of the covari-

ation matrix of motion.

System (3) is a linear system of equations with variable0

coefficients. The system can be stuii4ed analytically; but since

the system's order is quite high, it is more convenient to study

it by computer.

To explain the effect on AES motion about the center of mass

of the presence on board the satellite of a magnetic damper, sys-

tem (3) was integrated with the same initial data both with al-

lowance for moment of effect on the AES body from the magnetic

damper and without it.

In solving this problem it was felt that at the initial

moment of time, the satellite receives perturbation in angular

velocity of rotation such that

Sx--221=a2 -0,001t,
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i.e., the mean quadratic deviation of initial angular velocity

in projections onto the axes of a semi-stationary system of co-

ordinates constitutes

ai )ow, wLz =0,033 0 ,o

where w0 is the orbital angular velocity of the satellite. All

other elements of the covariation matrix are equal to zero at the

initial moment.

Fig. 8 shows change in time of mean quadratic deviations

x , ony = a and aO = a for an AES without a damper. In

variation of dispersion awx there is present an harmonic com-

ponent with a frequency of 2w0 , i.e., in the process of motion

of the satellite about the axis of dynamic symmetry may exist an

harmonic component with a frequencyof w0 and 2w0 . The nature of

variation of dispersions of angular velocities w yand wz, on one

,hand, and the orientation angles e and on the other, is identi-

cal; but they are in opposite phase. We can also talk of the pre-

sence of an harmonic component in a. (t); consequently, in motion
1

itself; the frequency of this component in i (t) w1 
= 5w0.

Standardized :correlation matrix of AES motion without a

damper is simple in form:

all other coefficients of the correlation are equal to zero.

Therefore, for motion in a circular orbit on the phase of

oriented motion of a dynamically symmetrical AES without any sort

of passive stabilization system, initial perturbation of angular /99

velocity evokes stable non-attenuating perturbations both in an-

gular velocity and in the orientation angles: a time-continuous

average level of dispersion for the following components of mo-
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tion is established
((0) p =( Wz)Cp- 0,0 10

'1 (o) ()cp p=0,011 pad,

and only perturbation of angular velocity in projection onto the

axis of dynamic symmetry of the satellite gradually attenuates.

66 6Q, I7
"4

0

0 200 300 A400 500 t, MUfN

Fig. 8.

0 200 J00 400 t

Fig. 9.

The situation is different if the satellite contains a mag-

netic damper system. In this event, according to Fig. 9, the

dispersion of orientation angles quickly attenuates, i.e., the

magnetic damper effectively counteracts different random per-

turbations of motion. In the dispersions of all components of

motion, the presence of an harmonic component with a frequency

equal to the frequency of orbital motion 0 is evident. The 23



standardized correlation matrix of motion has a rather complex /100

nature--all elements of this matrix depend on time and are great-

ly differeht from zero. In the variation of these elements (Fig.

10) the presence of a periodic component with a frequency of 00

is evident.

Therefore, the presence of a magnetic damper system on the

AES (passive stabilization) sharply alters the probability nature

of response in motion of the satellite around the center of mass

to accidental perturbations of initial angular velocity of rotat-

ion: correlation connections between all components become real,

coefficients of correlation vary in time, which greatly compli-

cates the covariation analysis of motion. But the presence of

an on-board magnetic passive stabilization system actively faci-

litates maintenance of stable motion and suppression of random

perturbations.

We would also note that similar results for the phase of

oriented motion of an AES about the center of mass were obtained

even with the Monte Carlo method both for an AES with a magnetic

damper and without one.

Moreover, the Monte Carlo method permitted us to solve the

problem of the possible approximation of the distributive law of

components of motion of an AES about the center of mass by the

normal distributive law.

8. The Distributive Law of Components of AES

Motion about the Center of Mass

In solving problems of defining AES orientation using

probability methods, it is important to know to which type the

process in po-int is related or, of equal value, what 'is the-aw

2 0 of evolution of the process.
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Among all known laws of distribution, particular place is

occupied by the normal law of distribution, since, first of all,

the normal law is fully defined by the assignment of averages

and a covariation matrix; and secondly, most random quantities

with which we must encounter in practice, are normally distributed.

In our case we are examining the function of random arguments/101

--the vectorial function; it is advisable to verify whether or not

this process is a multidimensional Gaussian process.

We know that if a multidimensional law of distribution of a

random vector is normal, then unidimensional laws of distribution

of the components of this vector are also Gaussian. Consequently,

to establish the nature of the law of distribution of the random

vector in point, we must first establish how close are the uni-

dimensional laws of distribution of the orientation angles and

angular velocities to the normal law of distribution.

Let us write the law of distribution of the component Xi in

a Gram-Charlier series [3]

f [X11= fo [XI + -n (X1

where H (Xi) is a Hermite polynomial, f (Xi) is a normal law of

distribution.

The coefficients c n are equal to zero for the normal law of

distribution and characterize deviations of any other law of dis-
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tribution from the normal.

The quantities are

72 =4 4= 1 -3,

where k--central moments of random magnitude on the order of k;

a--mean quadratic deviation, called appropriately the coefficient

of asymmetry and the coefficient of excess of distribution f[Xi].

We must note that in our case we are examining the law of

distribution f[Xi(t)] and consequently, all quantities: 71 and y2
and a. are functions of time.

1

The problem of defining estimates for Yl, and Y2 for all com-

poments of motion was solved simultaneously with the problem of

defining estimates of mathematical expectations and the elements

of the covariation matrix by the Monte Carlo method. Because for

each fixed moment in time a selection of random quantities was

developed by volume N, the dispersions of estimagtes of the coef-

ficients of asymmetry y1 and excess y2, according to [61, are equal

to the following quantities:

D ( _) 6 (N-1)
(N+1)(N+3)

24N (N-2) (N--3)'
(T)= (N+ 1) 2 (N+3) (N+5)

There is a rather simple criterion of concord [6] of this /102

law of distribution with the normal law: if the selectiyecoef-d

ficients of asymmetry and excess satisfy the inequalities 0

12 1<5262),
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then the observable distribution can be considered normal.

In the phase of oriented motion, the processing of results

obtained by the Monte Carlo method was brought to 30 versions.

Where N = 30,3y D(YI~) = 1.23, 5rTDY(y 2 ) = 3.5.

For an AES without a passive stabilization system, in the

phase of oriented motion the following maximum values were obtained

for the absolute values of estimhtes 1 and Y2:

maxlnTrw 1,17, max To w1=2,3, i=x,y,z,
max l axI-max T 1-=1,03, max 1 201=max172? [ =1,6.

For an AES with magnetic damper:

max [TIlo [=3,4, max. , ,y I 1=0,9.10 2,
max I, 1O I=max 171 1=0,84, max I T20 =max I72 =0,5.-12

Similar estimates for coefficients of asymmetry and excess

were obtained also for all other phases of motion of the AES

about the center of mass.

Therefore, with motion along a circular orbit of a dynamical-

ly symmetrical AES without any passive stabilization system, the

"normal" respbnsein variation of orientation angles and projec-

tions of angular velocity of rotation with a rather simple cor-

relation matrix is produced by "normal" perturbations in initial

angular velocity of rotation. The presence on board the AES of

a passive stabilization system alters the nature of system re-

sponse: the laws of distribution of components of motion sharply

differ from normal, the correlation matrix of motion varies in

time and the nature of these changes is quite complicated.

Consequently, the present on board the AES of a system of

passive stabilization complicates correlation analysis of motion.
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But we must against stress that the system of magnetic damping

effectively facilitates satellite orientation in space in a spe-

cific manner and suppression of random perturbations of motion.
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